The contribution of biodiversity offsetting towards biodiversity and landscape ecology goals

Nicola McHugh

Offsets can deliver biodiversity

Potential contributions at a number of levels

- Site based through direct investment
- Landscape based
 - incremental qualitative improvement
 - Improved connectivity of habitats
 - Address future biodiversity and landscape concerns

Linked ecosystem services

Systematic and rigorous offset planning is required to achieve this

What needs to be addressed when planning offsets

- Integration of offsets into existing policies and programmes
- 2. Appropriate geographical unit for offset delivery
- 3. Linkage between biodiversity of the impact and offset area
- 4. Understanding species requirements in the landscape
- 5. Linking to the wider landscape

Integration of offsets

Offsets could be used to deliver existing biodiversity goals and targets, e.g. Species Action Plans and Habitat Action Plans

- Greater achievement of targets would be possible
- An economic necessity
- Using quantifiable targets allow transparency in the offsetting process

Appropriate geography

Achieving maximum biodiversity value requires a re-think of geographical units

- Based on natural environmental factors, e.g. JCAs
- Reduced risk of isolated single site offsets
- Links individual offsets to wider landscape structure and functions
- Allows better integration of offsets with existing seminatural habitats and protected areas

Biodiversity of impact and offset areas

Defining offsets to match impacts

- Like for like, or better
 - Suitable habitat types and tradeability
 - Ratios and extents
- Spatial targeting of sites within geographical units
 - Spatial analysis within GIS
 - Numerous site characteristics can be searched for

Biodiversity of impact and offset areas

Considerations in offset location

- Basic ecological parameters
 - Soil types and suitability
 - Altitude
 - Proximity to watercourse and water bodies
 - Current land uses
 - Vegetation / habitat types on site and adjacent to site
- Other factors
 - Disturbance urban areas, main roads
 - Proximity and type of agricultural land

Incorporating species requirements

Species requirements can be used to achieve finer scale spatial targeting

Species characteristics

- Breeding habitat type and area requirements
- Dispersal ability in differing habitat types
- Use of non-breeding habitat

Ecological networks

Wider landscape contributions

Clear understanding of natural environment and other landscape functions

Benefits which could be achieved

- Structural improvements through additional high quality habitat areas
- Functional improvements by allowing species to utilise a larger part of the landscape – breeding and permeability

What are our aims for future landscapes?

- Better functioning ecological networks
- A landscape that can adapt and respond to changes

Biodiversity offsets must be planned to ensure they deliver wider landscape benefits

To be considered...

- An appropriate operational scale
- A strong biodiversity link between impact site / type and offset
- A thorough understanding of the offset landscape structure and function
- Delineation of ecological networks and identification of gaps and opportunities
- Other ecosystem services which can be delivered whilst ensuring biodiversity remains the primary purpose of offsetting?