How fit for purpose are our ecosystem service models?

Tom Oliver

NERC Centre for Ecology and Hydrology

toliver@ceh.ac.uk

Quantifying ecosystem services

The need for models

Increasing Uncertainty

Measured Proxy 3

Measured Proxy 2

Measured Proxy 1

Habitat extent for pollinators

Numbers of pollinating insects at monitoring stations

Yield increases on sentinel plants

Ecosystem service

e.g. Crop pollination

The need for models

Types of ecosystem service model

Model type	Examples	Best suited for
Benefits transfer	EcoServ Co\$ting Nature	Carbon Timber
Statistical correlative	EcoMaps	•••••
Process-based	InVEST ARIES LUCI Specialist models (e.g. Grid-to-grid)	Pollination Water quality Recreation

Benefits transfer

EcoServ-GIS

Accessible nature experience

Statistical correlative models

Process based models

Process based models

Types of ecosystem service model

Model type	Examples	Best suited for
Benefits transfer	EcoServ Co\$ting Nature	Carbon Timber
Statistical correlative	EcoMaps	•••••
Process-based	InVEST ARIES LUCI Specialist models (e.g. Grid-to-grid)	Pollination Water quality Recreation

Ecosystem service mapping initiatives

Choosing the best model.....

Not necessarily those that produce the prettiest outputs!

AREA 4: Functional Performance Summary by Function for Site

MANAGEMENT ACTIVITY: No management activities proposed at this time.

INDIVIDUAL FUNCTION PERFORMANCE SUMMARY

		FUNCTIONAL ACRES	% FUNCTIONAL PERFORMANCE
		BASELINE	BASELINE
Abiotic Functions Score (area weighted average)		15.7	42%
	Atmospheric cleansing	11.8	32%
	Carbon cycle support	18.4	49%
	Carbon sequestration	27.1	73%
	Carbon respiration	14.2	38%
	Organic matter export	12.9	35%
	Organic matter production	19.4	52%
	Erosion control	17.1	46%
	Soil retention	16.2	44%
	Sediment transport	9.5	26%
S	Soil / substrate stability	26.1	70%
Z	Evaporation	15.1	41%
ABIOTIC FUNCTIONS	Transpiration	10.5	28%
5	Filtration	11.6	31%
Ž	Groundwater recharge	5.4	15%
₽	Habitat formation	22.7	61%
-	Channel diversity	0.8	2%
12	Landscape connectivity	24.2	65%
Б	Natural flood regime	7.1	19%
m	Streambed stability	1.0	3%
⋖	Variable velocity	1.0	3%
	Infiltration	9.0	24%
	Interception	23.2	62%
	Nitrogen removal	16.1	43%
	Phosphorus retention	7.6	21%
	Pollinator support	22.0	59%
	Soil quality	20.8	56%
	Spatial separation	3.7	10%
	Subsurface flow	19.9	54%
	Temperature regulation	8.5	23%

		FUNCTIONAL	
		ACRES	PERFORMANCE
		BASELINE	BASELINE
	otic Functions Score ea weighted average)	17.1	46%
	Amphibian / turtle support	22.3	60%
	Bat support	16.5	44%
S	Insect / invertebrate support	17.0	46%
동	Large mammal support	14.2	38%
FUNCTIONS	Raptor support	17.7	48%
5	Reptile support	19.8	53%
Z	Resident fish support	6.4	17%
교	Small mammal support	12.0	32%
0	Songbird support	20.2	54%
ΙĔΙ	Vegetation support	17.8	48%
ВІОТІС	Natural plant succession	34.4	93%
B	Plant growth	12.6	34%
	Plant reproduction	17.1	46%
	Dispersal	12.1	33%
	Dispersal	12.1	33%

ACRES: 37.2

For more detail, please see next page.

OVERALL FUNCTIONAL PERFORMANCE SUMMARY

Average of Abiotic and Biotic Scores

FUNCTIONAL ACRES	% FUNCTIONAL PERFORMANCE	
BASELINE	BASELINE	
16.4	44%	

Choosing the best model.....

Transparency is needed to allow rigorous **assessment**... and **evidence-based decision** making that is **economically defensible**

Integrated Ecosystem Service Modelling

DATA

Integrated environmental datasets

MODELS

Expertise in ecosystem service models

ARtificial Intelligence for Ecosystem Services

VALIDATION

Empirical data for essential model testing

APPLICATION

Evidence-based advice on land use impacts

DATA

Land Cover Map 2007

National River Flow Archive

Countryside Survey

Biological Records Centre

Integrated Ecosystem Service Modelling

DATA

Integrated environmental datasets

MODELS

Expertise in ecosystem service models

ARtificial Intelligence for Ecosystem Services

VALIDATION

Empirical data for essential model testing

APPLICATION

Evidence-based advice on land use impacts

MODELS

Wessexbess http://www.brc.ac.uk/wessexbess

Providing evidence for the importance of **biodiversity** for **stocks, flows and resilience of ecosystem services** of pollination, pest control, water quality, GHG fluxes and cultural services

InVEST Training Course, CEH Wallingford, 14th-18th Oct 2013

Extending models

Integrated Ecosystem Service Modelling

DATA

Integrated environmental datasets

MODELS

Expertise in ecosystem service models

ARtificial Intelligence for Ecosystem Services

VALIDATION

Empirical data for essential model testing

APPLICATION

Evidence-based advice on land use impacts

Example 1- InVEST water yield model

Model fitted for 20 test catchments that vary in land cover, geology and population size

Validated against monitored river flow from the National River Flow Archive (NRFA)

Using mean flow for same 10 years as model inputs

Results: InVEST overestimates water yield per hectare, but by a consistent amount....

$$R^2 = 0.97$$

$$a = 4243$$

$$b = 0.99$$

Credit: Redhead et al.

Sensitivity analysis:

- Models run with varying parameters +/- 10%
- Model most sensitive to precipitation and potential evapotranspiration

15 - tndtno lepom ui ebuero 5 - S - Louis AWC PET PREC ROOTS InVEST parameter varied by 10%

Total Water Yield

Integrated Ecosystem Service Modelling

DATA

Integrated environmental datasets

MODELS

Expertise in ecosystem service models

Ecosystem Services

VALIDATION

Empirical data for essential model testing

APPLICATION

Evidence-based advice on land use impacts

Conclusions

- 1. More *validation* of ecosystem service models is needed
- 2. And rigorous *comparison of models* to pick most appropriate for given region/ spatial scale
- 3. Mapping supply of ecosystem services is only one side of the coin- *demand management* is critical

Acknowledgements

NERC, CEH colleagues (esp. John Redhead, James Bullock)

Example 2- InVEST crop pollination model

2000 transects (over 4 years) across 32 1km² cells in eight

English regions

